侵权投诉
当前位置:

OFweek安防网

智能卡

正文

人工智能时代,谷歌、英特尔和英伟达之间的计算能力角逐战

导读: 2001年6月26日,著名导演史蒂文·斯皮尔伯格执导的《人工智能》(英文名:《AI》)在美国上映。影片讲述的是机器人小男孩大卫为了寻找养母,并缩短机器人与人类的差距而奋斗的故事。

2001年6月26日,著名导演史蒂文·斯皮尔伯格执导的《人工智能》(英文名:《AI》)在美国上映。影片讲述的是机器人小男孩大卫为了寻找养母,并缩短机器人与人类的差距而奋斗的故事。

人工智能时代,谷歌、英特尔和英伟达之间的计算能力角逐战

《人工智能》电影剧照

大卫是一个被输入情感程序的机器人男孩,Cybertronics Manufacturing公司员工亨瑞和他妻子制造出的一个试验品。他们收养了大卫,并给了他足够的爱,但是人类与机器都无法接受大卫。于是大卫踏上旅程去寻找真正属于自己的地方,渴望成为一个真正意义上的人。

在这部影片上映15年后,机器人还没有成为真正意义上的人, 但人工智能在围棋领域战胜了人类。它的强大和超强的进化能力,让人类棋手难以望其项背。

人工智能时代,谷歌、英特尔和英伟达之间的计算能力角逐战

AlphaGo以3:0战胜柯洁九段

“AlphaGo Master比AlphaGo Lee(与李世石对战的版本)要强大,Master在对战中耗费的能力(性能和功耗)仅是Lee版本的十分之一,需要4个TPU在单台电脑上运行即可。“DeepMind首席科学家David Silver在AlphaGo 战胜李世石后这样解释说。

AlphaGo强大到令人绝望,引发了“人工智能威胁人类”的讨论。但在本质上,人工智能是算法、数据和硬件三个要素综合的结果。

一旦涉及到算法、数据,就离不开计算。在这个领域,用来计算的硬件主要是TPU、GPU和CPU,他们背后代表的公司则分别是谷歌、英伟达和英特尔。这几家公司彼此竞争,又互相需要。

TPU(Tensor Processing Unit)是专为机器学习而定制的芯片,经过了专门深度机器学习方面的训练。谷歌工程师Norm Jouppi介绍,在人工智能相关的算法上,它的计算速度更快,计算结果更精准,同时也更加节能。

人工智能时代,谷歌、英特尔和英伟达之间的计算能力角逐战

谷歌在I/O 2017上发布第二代Cloud TPU

人工智能依赖于机器学习(Machine Learning),机器学习又依赖于硬件,它需要硬件平台提供大量的运算资源。就计算效率来说,专用工具的计算效率远高于通用工具。专门为机器学习定制而出现的谷歌的TPU就是一种专用的工具,业内普遍认为它的出现对于通用工具GPU来说是一种威胁。

GPU的设计初衷不是主要用来进行神经网络运算,而是图像处理。由于其特殊的构造碰巧也比较适用于神经网络运算,所以在TPU出现之前,大多数做机器学习厂商都在同时利用FPGA和GPU来改进训练自己的神经网络算法。

英伟达创始人兼CEO黄仁勋却不认同“TPU威胁论”,在接受凤凰科技的采访时,他表示谷歌的TPU不会对英伟达的Volta GPU构成威胁,双方在TensorFlow项目上保持着合作,而Volta GPU的运算能力甚至在TPU之上。

作为世界最大的GPU制造商之一,英伟达一直不遗余力地推广GPU在深度学习领域的应用。老黄将英伟达称为“一家人工智能公司”。

谈到英伟达基于GPU的人工智能战略,需要先从Volta说起。

在今年5月11日的NVIDIA GTC 2017上,英伟达推出了全新的GPU架构Volta。英伟达应用深度学习研究副总裁Bryan Catanzaro表示这并不是前代架构Pascal的升级,而是一个全新的架构。Volta提供大量的FLOP(浮点运算),基于Volta的架构,人们就可以使用需要更多FLOP的深度学习模型。如今很多流行的模型都需要很大的计算资源,例如卷积学习神经网络。

人工智能时代,谷歌、英特尔和英伟达之间的计算能力角逐战

黄仁勋展示基于Volta架构的Tesla V100加速芯片

基于全新的Volta架构,英伟达推出Tesla V100加速器,它速度比其前身Tesla P100快2.4倍。

1  2  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,除OFweek官方账号外,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

X
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: